## Mixed thinning $\operatorname{INAR}(1)$ model

Ana D. Janjić, Miroslav M. Ristić, Aleksandar S. Nastić

Faculty of Science and Mathematics, University of Niš, Serbia

$$
\text { June 9, } 2014
$$

(9) Introduction
(2) Thinning operators and INAR(1) models based on them

- Binomial thinning operator
- Generalized thinning operator
(3) Mixed thinning $\operatorname{INAR}(1)$ model
- Motivation
- The mixed thinning operator
- The mixed model

4 Application

5 References

## Integer-valued time series

Fields of usage of counting processes

- meteorology (earthquakes counting),
- insurance theory (counts of accidents),
- communications (transmitted messages),
- medicine (number of patients),
- law and social sciences (crime victimizations) and so on.

History of development of integer-valued time series

- Model based on Markov chains (Cox and Miller (1965))
- MTD models (Raftery (1985a))
- DARMA models (Jacobs and Lewis (1978a,b,c))


## First ordered integer-valued autoregressive model (INAR(1))

Defined by the recursion

$$
X_{t}=\sum_{i=1}^{X_{t-1}} B_{i}(t)+\epsilon_{t}, \quad t \in Z
$$

with demands:

- $\left\{\boldsymbol{B}_{i}(\boldsymbol{t})\right\}$ and $\left\{\epsilon_{t}\right\}$ are integer-valued,
- $\left\{B_{i}(t)\right\}$ is i.i.d. sequence independent of $X_{t-1}$ and $\epsilon_{t}$,
- $\left\{\epsilon_{t}\right\}$ is i.i.d. sequence independent of $X_{t-i}$, for $i \geq \mathbf{1}$.

Note that $X_{t-1}=\mathbf{0} \Rightarrow X_{t}=\epsilon_{t}$.

## Thinning operators

Probabilistic operations that can be applied to random counts.

- Purpose: shrinking the observed population
- Method: randomly deletes some members of the population

Many different types of thinning operators, refer to a survey of Weiss (2008).

## Binomial thinning

Let $X$ be integer-valued r.v. and $\alpha \in[\mathbf{0}, \mathbf{1}]$. Define a random variable

$$
\alpha \circ X=\sum_{i=1}^{X} Y_{i},
$$

where $\left\{\boldsymbol{Y}_{i}\right\}$ are i.i.d. Bernoulli indicators with parameter $\boldsymbol{\alpha}$ (called counting series), which are independent of $X$. We say: $\alpha \circ X$ arises from $X$ by binomial thinning, and " $\circ$ " is the binomial thinning operator.

- $\alpha \circ X \mid(X=x): \operatorname{Bin}(x, \alpha)$
- $\alpha \circ X \leq X$
$\Rightarrow$ The term is entirely justified.


## Interpretation of $\alpha \circ X$

- Observe the population of size $X$ at certain time $t$.
- At next time point $t+\mathbf{1}$ the population may be shrinked, because some of the elements have left between time points $t$ and $t+\mathbf{1}$.
- Assume that elements under the study leave independently of each other with probability $1-\alpha$.
$\Rightarrow$ Size of the observed population at time point $t+\mathbf{1}$ is $\alpha \circ \boldsymbol{X}$.

Introduction
Thinning operators and INAR(1) models based on them
Mixed thinning INAR(1) model
Application
References

Some properties of binomial thinning

$$
\begin{array}{rll}
\alpha \circ(X+Y) & \stackrel{d}{=} \alpha \circ X+\alpha \circ Y, \text { for independent r. v. } X, Y \\
\alpha \circ(\beta \circ X) & \stackrel{d}{=}(\alpha \beta) \circ X \\
1 \circ X & \stackrel{w p 1}{=} X \\
0 \circ X & \stackrel{w p 1}{=} & 0 \\
E[\alpha \circ X] & =\alpha E[X] \\
\operatorname{Var}[\alpha \circ X] & =\alpha^{2} \operatorname{Var}[X]+\alpha(1-\alpha) E[X]
\end{array}
$$

## INAR(1) model based on binomial thinning

Let $\alpha \in(\mathbf{0}, \mathbf{1})$. The model is defined by the recursion

$$
X_{t}=\alpha \circ X_{t-1}+\epsilon_{t}, \quad t \in Z
$$

with demands:

- Thinning operations are performed independently of each other and of $\left\{\epsilon_{t}\right\}$
- At each time $t$ thinning operations at that time and $\epsilon_{t}$ are independent of $\left\{\boldsymbol{X}_{s}\right\}_{s<t}$

Special case: geometric marginals (GINAR(1) introduced by Alzaid and Al-Osh (1988))

## Interpretations

## Basic interpretation

- $\boldsymbol{X}_{\boldsymbol{t}}$ - size of the population at time $\boldsymbol{t}$
- $\alpha \circ X_{t-1}$ - survivors of time $t-1$
- $\epsilon_{t}$-immigration


## An alternative interpretation

- $\boldsymbol{X}_{\boldsymbol{t}}$ - customers at time $\boldsymbol{t}$
- $\epsilon_{t}$ - new customers arrived between time points $t-\mathbf{1}$ and $t$
- $X_{t-1}-\alpha \circ X_{t-1}$ - customers that have been lost between time points $t-1$ and $t$

Some generalizations of binomial thinning

Obtained by relaxing conditions specified in the definition of binomial thinning.

- counting variables have full range $\mathbf{N}_{\mathbf{0}}$ - generalized thinning - special case: negative binomial thinning
- negative integers are included - signed thinning
- random coefficient thinning
- dependent Bernoulli indicators


## Model based on negative binomial thinning

Defined by the recursion

$$
X_{t}=\alpha * X_{t-1}+\epsilon_{t}, \quad \text { where } \quad \alpha * X=\sum_{i=1}^{X} Y_{i}, \quad \text { for } \quad Y_{i}: \operatorname{Geom}\left(\frac{\alpha}{1+\alpha}\right)
$$

- Operator " $*$ " is not actually a "thinning", because $\alpha * \boldsymbol{X} \leqslant \boldsymbol{X}$ is not always true.
- Special case: geometric marginals (NGINAR(1) introduced by Ristić et al. (2009))


## o VS *

The main differences are

- $0 \circ X \stackrel{w p 1}{=} 0$ and $0 * X \stackrel{w p 1}{=} 0$, but
- $1 \circ X \stackrel{w p 1}{=} X$, while $\mathbf{1} * X \stackrel{d}{=}\left\{\begin{array}{ll}0, & \text { w.p. } \frac{1}{1+\mu} \\ X, & \text { w.p } \frac{\mu^{2}}{(1+\mu)^{2}} \\ X+Y, & \text { w.p. } \frac{\mu}{(1+\mu)^{2}}\end{array}\right.$ where $\boldsymbol{Y}$ is geometric $\left(\frac{1+\mu}{2+\mu}\right)$ independent of $X$.
- $\beta \circ(\alpha \circ X)=(\beta \alpha) \circ X$, where counting sequences of " $\alpha \circ$ " and " $\beta \circ$ " are independent, unfortunately

$$
\beta *(\alpha * X) \stackrel{d}{=}\left\{\begin{array}{ll}
0, & \text { w.p. } \frac{1+\alpha}{1+\alpha+\alpha \mu} \\
(\beta \alpha) * X+Y_{1}, & \text { w.p. } \frac{\alpha^{2} \mu^{2}}{(1+\alpha+\alpha \mu)(1+\alpha \mu)} \\
(\beta \alpha) * X+Y_{2}, & \text { w.p. } \frac{\alpha \mu}{(1+\alpha+\alpha \mu)(1+\alpha \mu)}
\end{array} \quad \boldsymbol{Y}_{1} \text { and } \boldsymbol{Y}_{2}\right. \text { are }
$$

independent and geometrically distributed with parameters $\frac{\beta \alpha}{1+\beta \alpha}$ and $\frac{\beta(1+\alpha+\alpha p)}{1+\beta(1+\alpha+\alpha p)}$, respectively and are independent of $X$.

- $E(\alpha \circ X)^{2}=\alpha^{2} E\left(X^{2}\right)+\alpha(1-\alpha) E(X)$, similarly $E(\alpha * X)^{2}=\alpha^{2} E\left(X^{2}\right)+\alpha(1+\alpha) E(X)$.


## Model based on dependent Bernoulli counting series

(1) Generate a sequence of dependent Bernoulli r. v. as

$$
U_{i}=\left(1-V_{i}\right) W_{i}+V_{i} Z, \text { where }
$$

- $\left\{W_{i}\right\}$ is i.i.d. with $\operatorname{Ber}(\boldsymbol{\alpha})$ distribution,
- $\left\{V_{i}\right\}$ is i.i.d. with $\operatorname{Ber}(\boldsymbol{\theta})$ distribution,
- Z: Ber $(\alpha)$.

$$
U_{1}+U_{2}+\ldots+U_{n} \stackrel{d}{=} \begin{cases}\operatorname{Bin}(n, \alpha(1-\theta)), & \text { w.p. } 1-\alpha \\ \operatorname{Bin}(n, \alpha+\theta-\alpha \theta), & \text { w.p. } \alpha\end{cases}
$$

(2) Define thinning operator as $\alpha \circ_{\theta} X=\sum_{i=1}^{X} U_{i}$.
(3) Obtained model

$$
X_{t}=\alpha \circ_{\theta} X_{t-1}+\epsilon_{t}, \quad t \in Z
$$

Introduced by Ristić et al. (2013)

- Models based on binomial thinning
- elements can enter/survive/leave (contribution to the overall thinning sum 0 or 1)
- Models based on negative binomial thinning
- elements by replicating themselves contribute to the overall thinning sum more than 1
- By mixing we could deal with elements which are active in some period and passive in another

Applications:

- the number of patients with certain transmitting disease
- the number of crimes in some police district
- the number of bacteria


## Construction of the mixed thinning operator

Let $\left\{W_{i}\right\}_{i \in N}$ be i.i.d. sequence, defined as

$$
W_{i}=\left\{\begin{array}{ll}
B_{i}, & \text { w.p. } p, \\
G_{i}, & \text { w.p. } 1-p,
\end{array} \quad p \in[0,1], B_{i}: \operatorname{Ber}(\alpha), G_{i}: \operatorname{Geom}\left(\frac{\alpha}{1+\alpha}\right) .\right.
$$

The new thinning operator is

$$
\alpha \bullet_{p} X=\sum_{i=0}^{X} W_{i}
$$

where $\boldsymbol{W}_{\mathbf{0}}=\mathbf{0}, \mathrm{X}$ is nonnegative integer-valued r.v. independent of the counting series $\left\{W_{i}\right\}_{i \in N}$.

Introduction
Thinning operators and INAR(1) models based on them Mixed thinning INAR(1) model Application References

## Basic properties of the mixed thinning operator

Using p.g.f. of $\boldsymbol{W}_{i}$, we obtain

$$
\alpha \bullet_{p} X \left\lvert\,\{X=x\} \stackrel{d}{=} \begin{cases}N B\left(x, \frac{\alpha}{1+\alpha}\right) & \text { w.p. }(1-p)^{x} \\ \operatorname{Bin}(i, \alpha)+N B\left(x-i, \frac{\alpha}{1+\alpha}\right) & \text { w.p. }\binom{x}{i} p^{i}(1-p)^{x-i} \\ \operatorname{Bin}(x, \alpha) & \text { w.p. } p^{x}\end{cases}\right.
$$

$$
\text { for } \mathbf{1} \leq i \leq x-\mathbf{1}
$$

Let $\boldsymbol{J}: \boldsymbol{\operatorname { B i n }}(\boldsymbol{x}, \boldsymbol{p})$. Then

$$
\alpha \bullet_{p} X \left\lvert\,\{X=x\} \stackrel{d}{=} \operatorname{Bin}(J, \alpha)+N B\left(x-J, \frac{\alpha}{1+\alpha}\right) \stackrel{d}{=} \alpha \circ J+\alpha *(x-J) .\right.
$$

Also,
$\boldsymbol{E}\left[\alpha \bullet_{p} \boldsymbol{X}\right]=\boldsymbol{\alpha}[\boldsymbol{X}]$
$\operatorname{Var}\left[\alpha \bullet_{p} X\right]=\alpha^{2} \operatorname{Var}[X]+\alpha(1+\alpha-2 \alpha p) E[X]$

Introduction
Thinning operators and INAR(1) models based on them
Mixed thinning INAR(1) model Application References

Construction of the mixed model with geometric marginals (MixGINAR(1))

MixINAR(1) model is defined by recursion

$$
\begin{equation*}
\boldsymbol{X}_{t}=\alpha \bullet_{p} \boldsymbol{X}_{t-1}+\varepsilon_{t}, \quad t \in Z \tag{1}
\end{equation*}
$$

with demands:

- $\left\{\varepsilon_{t}\right\}_{t \in \mathbb{Z}}$ is a sequence of i.i.d. r. v. independent of the counting series $\left\{W_{i}\right\}_{i \in \mathbb{N}}$,
- r. v. $\boldsymbol{X}_{t-i}$ and $\varepsilon_{t}$ are independent for all $\boldsymbol{i} \geqslant \mathbf{1}$.

The mixed model (1) with geometric marginals (MixGINAR(1)) contains two existing models as special cases:

- for $\boldsymbol{p}=\mathbf{0} \Rightarrow \operatorname{MixGINAR}(1) \equiv \operatorname{NGINAR}(1)$,
- for $\boldsymbol{p}=\mathbf{1} \Rightarrow \operatorname{MixGINAR}(1) \equiv \operatorname{GINAR}(1)$.

Introduction
Thinning operators and INAR(1) models based on them Mixed thinning INAR(1) model Application References

## Distribution of innovation process for (MixGINAR(1))

Using the p.g.f. of innovation r.v. we obtain next result:
Let $\boldsymbol{X}_{\boldsymbol{t}}: \boldsymbol{\operatorname { G e o m }}\left(\frac{\mu}{1+\mu}\right)$ for $\boldsymbol{t} \in \mathbf{Z}$ and $\boldsymbol{\mu} \geqslant \boldsymbol{\alpha}(\mathbf{1}-\alpha \boldsymbol{p}) /(\mathbf{1}-\alpha)$. Then

$$
\varepsilon_{t} \stackrel{d}{=} \begin{cases}\mathbf{0}, & \text { with probability } \alpha p, \\ \operatorname{Geom}\left(\frac{\alpha}{1+\alpha}\right), & \text { with probability } \frac{\alpha \mu(1-p)}{\mu-\alpha}, \\ \operatorname{Geom}\left(\frac{\mu}{1+\mu}\right), & \text { with probability } \frac{\mu-\alpha(1+\mu-\alpha p)}{\mu-\alpha}\end{cases}
$$

Introduction

## Conditional least squares estimations

The unknown parameters $\boldsymbol{\alpha}, \boldsymbol{\mu}$ and $\boldsymbol{p}$ need to be estimated. Since the conditional expectation $E\left(\boldsymbol{X}_{\boldsymbol{t}} \mid \boldsymbol{X}_{t-1}\right)=\alpha \boldsymbol{X}_{t-1}+(1-\alpha) \mu$ only depends on the first two parameters $\alpha$ and $\boldsymbol{\mu}$, we will use the two-step conditional least squares approach considered by Karlesen and Tjøstheim (1986).

- Step one: estimation of the unknown parameters $\alpha$ and $\mu$,
- Step two: estimation of the unknown parameter $\boldsymbol{p}$ using the conditional least squares estimates of the parameters $\alpha$ and $\mu$ obtained in the first step.

Introduction
Thinning operators and INAR(1) models based on them Mixed thinning INAR(1) model Application References

## Obtained conditional least squares estimates

$$
\begin{aligned}
& \hat{\alpha}_{c l s}=\frac{(n-1)^{-1} \sum_{t=2}^{n-1} X_{t} X_{t-1}-(n-1)^{-2} \sum_{t=2}^{n} X_{t} \sum_{t=2}^{n} X_{t-1}}{(n-1)^{-1} \sum_{t=2}^{n} X_{t-1}^{2}-(n-1)^{-2}\left(\sum_{t=2}^{n} X_{t-1}\right)^{2}} \\
& \hat{\mu}_{c l s}=\frac{\sum_{t=2}^{n} X_{t}-\hat{\alpha}_{c l s} \sum_{t=2}^{n} X_{t-1}}{(n-1)\left(1-\hat{\alpha}_{c l s}\right)} \\
& \hat{p}_{c l s}=\frac{\sum_{t=2}^{n} \hat{Z}_{t}\left(X_{t-1}-\hat{\mu}_{c l s}\right)}{2 \hat{\alpha}_{c l s}^{2} \sum_{t=2}^{n}\left(X_{t-1}-\hat{\mu}_{c l s}\right)^{2}},
\end{aligned}
$$

where
$\hat{Z}_{t}=-\hat{Y}_{t}+\hat{\alpha}_{c l s}\left(1+\hat{\alpha}_{c l s}\right) X_{t-1}+\hat{\mu}_{c l s}\left(1-\hat{\alpha}_{c l s}-2 \hat{\alpha}_{c l s}^{2}+\hat{\mu}_{c l s}-\hat{\alpha}_{c l s}^{2} \hat{\mu}_{c l s}\right)$
$\hat{Y}_{t}=X_{t}-\hat{\alpha}_{c l s} X_{t-1}-\left(1-\hat{\alpha}_{c l s}\right) \hat{\mu}_{c l s}$.

## We will compare $\operatorname{GINAR}(1), \operatorname{NGINAR}(1)$ and $\operatorname{MixGINAR(1).}$

Consider data series representing a monthly counting of committing a light criminal activity, public drunkenness, in a period from January 1990 to December 2001, constituting sequence of 144 observations.
(1) Series PubDrunk-22 is created by the 22nd police car beat of Pittsburgh and can be downloaded from a website Forecasting Principles (http://www.forecastingprinciples.com).

The sample mean, variance and autocorrelation of the PubDrunk-22 are respectively, 1.34, 10.1 and 0.761.




Mixed thinning INAR(1) model

| Model | MLE | MLV | RMS |
| :--- | :--- | :--- | :--- |
| GINAR(1) | $\hat{\boldsymbol{q}}=\mathbf{0 . 6 0 3 0}$ |  |  |
| NGINAR(1) | $\hat{\alpha}=\mathbf{0 . 4 8 0 0}$ | 188.099 | 2.248 |
|  | $\hat{\mu}=\mathbf{1 . 3 7 2 9}$ |  |  |
|  | $\hat{\alpha}=\mathbf{0 . 5 7 2 0}$ | 178.010 | 2.146 |
| MTGINAR(1) | $\hat{\mu}=\mathbf{1 . 4 5 4 4}$ |  |  |
|  | $\hat{\boldsymbol{p}}=\mathbf{0 . 2 2 3 4}$ |  |  |
|  | $\hat{\alpha}=\mathbf{0 . 6 1 6 7}$ | 177.320 | 2.111 |

MLE- maximum likelihood parameter estimates
MLV - maximum log-likelihood values
RMS - the root mean squares of differences between the observations and predicted values

## References

- Alzaid, A.A., Al-Osh, M.A. (1988) First-order integer-valued autoregressive (INAR(1)) process: distributional and regression properties. Stat. Neerlandica, 42, 53-61.
- Cox, D.R. and H.D. Miller (1965) The theory of stochastic processes. Methuen, London.
- Jacobs, P.A. and P.A.W. Lewis (1978a) Discrete time series generated by mixtures I: correlational and runs properties. J. R. Statist. Soc. (B) 40, 94-105.
- Jacobs, P.A. and P.A.W. Lewis (1978b) Discrete time series generated by mixtures II: asymptotic properties. J. R. Statist. Soc. (B) 40, 222-228.
- Jacobs, P.A. and P.A.W. Lewis (1978c) Discrete time series generated by mixtures III: auto regressive process (DAR(p)). Naval Postgraduate School Technical Report NPS55Lw 73061.A
- Karlsen, H., Tjøstheim, D. (1988) Consistent estimates for the NEAR(2) and NLAR(2) time series models, J. R. Statist. Soc. B, 313-320.
- Raftery, A.E. (1985) A model for higher-oder Markov chains. J. R. Statist. Soc. (B) 47, 528-539.
- Ristić, M.M., Bakouch, H.S., Nastić, A.S. (2009) A new geometric first-order integer-valued autoregressive (NGINAR(1)) process. J. Stat. Plann. Inf., 139, 2218-2226.
- Ristić, M.M., Nastić, A.S. Miletić Ilić A.V. (2013) A geometric time series model with dependent Bernoulli indicators. Journal of Time Series Analysis 34, 466-476.
- Tjøstheim, D. (1986) Estimation in nonlinear time series models, Stochastic Processes and their Applications 21(2), 251-273.
- Weiß, C.H. (2008b) Thinning operations for modeling time series of counts—a survey. Adv. Stat. Anal., 92, 319-341.


## Thank You for Your Attention

